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A spectral element model is built for the shallow water equations in
complex geometry. it is proved to be an efficient computational model
in solving oceanic problems. In particular, the equatorial Rossby
modon’s reflection process is simulated. @ 1993 Academic Press, Inc.

1. INTRODUCTION

In the world of scientific computation, three numerical
methods are most frequently used: the finite difference
method, the spectral method, and the finite element method.
Through decades of development, both in theory and
in application, these three methods have almost been
perfected.

The finite difference method has been around the longest
and is still popular because of its simplicity. In fact, if preci-
sion is not the crucial issue, the finite difference method is
indeed very efficient with regard to programming and
computational cost. The application of the finite difference
method in geophysical fluid dynamics can be tracked back
to some 70 vears ago when L. F. Richardson did the first
numerical weather prediction [16]. Even though the first
weather forecast turned out to be unsuccessful, it was a mile-
stone in meteorology nevertheless. Today’s atmospheric
general circulation models (GCMs), much more accurate of
course, are still using the finite difference method, mostly in
the vertical spatial direction. The simulation of oceanic cir-
culation began in the early 1960s [37]. Most of the oceanic
GCMs use the finite difference method in all three spatial
directions,

The spectral method is a high order weighted residual
method. It is also known as the p-type weighted residual
method. Unlike the finite element method, the trial
functions of the spectral method are global, so it is usually
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applied to regular geometrical problems with smooth solu-
tions. The spectral method is famous for its efficiency for
achieving high precision. It has been estimated [2] that in
order to obtain 1% accuracy for a wave-like solution, 40
grid points per wavelength are needed for the second-order
finite difference method, but only 3.5 collocation points per
wave length are needed for the Chebyshev spectral method.
Therefore, the spectral method is about 10 times more
efficient than the finite difference method in storage aspect
alene (in one dimension). Peyret and Tavlor [153)
compared the finite difference method with the spectral
method and found that the spectral method was at least
10 times faster than the finite difference method for the same
accuracy in the vortex problem they solved. Haidvogel er al.
[7] also demonstrated the overwhelming advantage of the
spectral method over the finite difference and the finite
element methods in solving the vorticity equation problem
in an unbounded ocean.

However, the spectral method has its own limitations.
For instance, the grid resolution is not uniform and it
increases drastically toward the boundaries of the computa-
tional domain. This imposes a severe limitation on the
maximum time step when solving initial value problems
via an explicit time marching scherme [6]. Therefore, we
often use implicit methods in conjunction with spectral
algorithms. Unfortunately, these implicit schemes are not
terribly efficient either, because the matrices in the speciral
method are full matrices, unlike the narrowly banded
matrices of the finite difference and the finite element
methods. Some spectral matrices may be solved more
efficiently by applying different kinds of preconditionings
and muiti-grid techniques [2].

The finite element method is a low order, h-type weighted
residual method. It has been widely applied to many
mechanical engineering fields, especially in solid mechaunics,
because of its extreme geometrical flexibility. There are
some appiications of the finite element method in coastal
enginecring where complicated coastlines often have 1o be
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approximated either by straight lines or zigzag lines in order
to use spectral or finite difference methods. With finite
elements, curvy coastlines can be approximated rather well
without a lot of computational effort { 18], The drawback of
the finite element method is that it is a low order method.
Like finite difference methods, the finite element method
converges slowly as the number of the elements is increased.

The spectral element method is a combination of both the
spectral and the finite element methods. It was first intro-
duced by Patera [14]. The speciral element method is also
calied the “p-type finite element™ method, or the h-p type
weighted residual method. Like the spectral method, it uses
high order polynomials as trial functions, but like the finite
element method, it decomposes the computational domain
into many elements and defines focal trial functions. The
hybrid character of the spectral element method enables it
to overcome the shortcomings of both the speciral methed
and the finite element method but still retain their advan-
tages. Since the trial functions of the spectral element
method are local, it can handle complex geometry easily
[9]. On the other hand, it is still a high order weighted
residual method, so the exponential convergence rate is
achieved as the degree of the polynomials in each element is
increased. The main difference between the spectral element
method and the spectral multi-domain method is that the
C° and C! boundary conditions at the interface of the
elements have to be explicitly enforced by the spectral multi-
damain method. The spectral element method, by contrast,
uses the variational principle to guarantee C° and C'
(weakly) continuity at the interface [12], which results in a
much simpier and more natural approach than the non-
variational method; therefore, parallel algorithms can be
conveniently implemented [ 5]. Over the past seven years of
development and application, mostly in mechanical
engineering fields, the spectral element method has been
proved to be a very promising numerical method. In
geophysical fluid dynamics, however, the application of the
spectral element method is only in a very early stage
[10, 111.

The purpose of the present work is to build a spectral
element model for the shallow water equations which have
a special position in studying the behavior of the thin layer
of fluid on the earth’s surface, ie., the atmosphere and
ocean. The spectral element interpolation schemes used here
are similar to those developed by Patera [ 147 and Ronquist
[17]. However, instead of using a semi-implicit time
marching scheme as proposed by [14, 17], we found that
with the horizontal eddy viscosity range for oceanic applica-
tions, It is more efficient to use a fully explicit scheme for the
current spectral element shallow water equation model. In
the case of the Navier-Stokes cquations or the Stokes
equations, matrix iterations or inversions can be expensive
because the related matrices have dense blocks due to the
spectral element formulation. In the case of the shallow
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water equations, however, when a fully explicit time
marching scheme is used, the matrix needed to be inverted
in the current model is diagonal! The present work showed
convincing evidence that the spectral element model for the
shallow water equations can provide not only good spatial
resolution and geometrical flexibility, but also affordability
for long-range time dependent simulations which are
needed in climate related studies.

2. MODEL FORMULATION

2.1. Governing Equations

If the horizontal eddy viscosity is included, the shallow
water equations are of the form

au (?u Ju ah *u  Hu

ey e (e e
v dv  Bv aoh ¢ 0%
—+u—+v—w+ﬁf"— g5 H(E'*'a_vz) (2.2)

aj+—[H+h u]+—[(H+h):,] 0, (2.3)

)

where / is the surface displacement, g is the gravitational
acceleration, A is the mean depth of the fluid, 7 is
the Coriolis parameter calculated through the B plane
approximation (f = f, + ), and A, is the horizontal eddy
viscosity parameter.

If the equatorial nondimensionalization scales are
used, the variables in the shallow water equations on an
equatorial § plane can be nondimensionalized as

(x, »y=E~Ya(x', y')= L(x", y') (24)
t=ERQ r=Tr (2.5)
(4, v) = (gH ) (', v') = U, v') (2.6)
h=Hyh (2.7)
f=By=2QE "y, (2.8)

where the Lamb number £ =4Q%*(gH,) ™", a is the radius
of the earth, @ =27 day ™", and H, can be either the mean
depth of the ocean for a barotropic model, or the so-called
“equivalent depth” for a reduced gravity model. If we
choose the equivalent depth H,=40cm, then £ =295 km
and T=1.71 days.

Substituting the above nondimensional variables into
Eqgs. (2.1)-(2.3) and omitting the primes, we obtain the non-
dimensionalized shallow water equations

+u—+v—— o= ——

du  du  du éh ’u
8t ox dy dx (a’f 2) 9
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5_v+u@_+ 5_U+ o dh 1 8% 3% 5

at it y’”“aﬂi(ﬁ*éﬁ) (2.10)
dh 0§ Fed
E;+5;[u(l+h)]+5[v(i+h)]=0, (2.11)

where R, is the Reynolds number defined as I/R_ =
A (UL)™

For an ocean basin model, we assume no slip and no
normal flow boundary conditions, namely,

u(x, p,ty=v(x, v, 1)=0 (x, yyeof2, (2.12)

where 042 is the boundary of the computational domain Q.

If we neglect the effect of the meridional boundaries, the
above rigid boundary conditions may be substituted
by semi-pericdic boundary conditions. In this case, the
northern and southern boundaries are usually assumed to
be rigid, but the channel is self-connected (periodic) in the
zonal direction.

2.2, Weak Form

Assuming (u, v, i) e #'(€2) (Sobolev space) and their test
functions (#, v, 7)€ #'(2), then by multiplying the test
functions through the corresponding equations in Egs.
{2.9)-(2.11) and integrating, the weak form of the shallow
water equation system is obtained as

1 (Oudd Jdudi
ol et )l _
+Re (6x ax+ay ay) (2.13)
J@ﬁ -] (”@”_Uv“ “-I'%)ﬁ
| /ovd5 &vdd
+E(aa+@5)d9 (2.14)

oh oh éh
Lé—lhdg_fnu(l +h) 5+ ol +h) 3 dR. (215)

The Dirichlet boundary condition {2.12) is used in deriving
the above equations, which means that (u, v) e #3(2) and
(2, 5}y e #o(2). #5(£2) is defined by # )(2) = {ve #L(2)|
be LHRQ), v, e FHQ), v,€ LAY, v(d2)=0}.

The task of the variational method is to find
(u,v)e #{Q) and he #'(Q) such that the residuals of
(2.13)+2.15) are minimized for all (&, 7)e #)(2) and
he#' ().
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2.3. Domain Decomposition and Local Coordinate
Transformation

Let £ be an arbitrary two-dimensional geometrical
domain and let £ be decomposed into X elements £,
e=1,2,.,K, in such a way that £2, has the following
properties:

¢ f=EQP=,Q;

 O,nQ;=0Q; 1l Q, and Q, are connected and Q2 is
their common boundary.

Let % be a continuous one-to-ene mapping such that
%(£2) = §. Then under mapping %. there is a corresponding
clement decomposition on € and its elements £2, also satisfy
the listed connection properties. In addition, €, are
assumed to be rectangles, which can be achieved by
properly choosing %. There are developed technigques to
deal with domain mapping problems. In particular, the so-
called isoparametric method, which is widely used in the
finite element method, has also been successfuily applied in
the spectral element method [9]. The isoparametric
algorithm is going to be discussed in the next section.

Now each element £, which is a rectangle [af, a®] x
[a¢, a?], is ready to be mapped onto a square, A% =
[~1,17% by

2
{=———(f—aj)—1,
lay — a7l

e=1,2,.., K (216)

2
'? I [

—_— e=12.,K (217)
al—ag)

(F—ap)—1,

where (%, j}are the coordinates of a coliocation point on £,
and (£, n} are the corresponding local coordinates on A2
We call A? the master element.

Domain € is more of a convenient mathematical concept
than a computational necessity. In actual applications,
mappings can be carried out directly between Q, and the
master element, A2,

24, Isoparametric Spectral Element Interpolation

The basis functions used in the present work, h,{&), are
the so-called Gauss-Lobatto-Legendre polynomials [177.
They are defined by

(1-—¢&%) Lyi)
IN+ D) Ly{ENE—E0)

he(¢)= —N (i:OQ Is (RS} N)a

(2.18)

where L, is the ANth-order Legendre polynomial, L),
is its first derivative and the collocation point ¢&;
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(i=1,2, ..,
SrN= L

By this definition we know that A;(£;) is a Kronecker
delta function, i.e.,

N—1} is the ith root of L}, ({) and &;= —1,

hi(E)=68, Vi je{l,2, ., N}% (2.19)

Then on the master element we give a basis set {i,,}

Vil& M =RAE hn),  Ln=1{0,1,2 ., N}2 (220

With this basis set, we can define 1 mapping between
€2, and the master element in the following tensor-product
format:

(x, ¥)=Cx;, ¥ B (&) hy(n). (2.21)

Here we used the convention of tensor product that if a
subscript is repeated it means a summation over all the
components represented by that subscript. Similar conven-
tion of tensor product summation will be used in later parts
of this paper. The above definition, in particular, sets a
one-on-one mapping between the interpolation points
(x;, y,) on the subdomain 2, and the Gauss—Lobatto points
(£, n;) on the master element, because (x, y)=(x;, ¥))
when (£, n)= (£, n;).

Now the basis set {t/,,} on the master clement has its
projection {4} on each subdomain (2, through the
mapping (2.21) and

WL ¥)(x, ) e, T=m[Ex, )] h,[nix, ¥}],

Ln=1{0,1,2,.,N}* (222)

With well-distributed interpolation points on £,, it can
be proved that {¢7 ]} is complete (when N — o0} and
orthogonal. Therefore, if .#° is the subspace spanned by
(Wi e’ then there is a projection I, such that
Yu'(x, ylx, ve ) e #!

(2.23)

{L(u*(x, y))=uy(8(x, y), nix, y)e #7,

where uj is the numerical approximation of u*.
Then, it follows that there is a projection [7 such that
Yu(x, y|x, yeQye #*
K K

U usl&(x, y)onlx, y)]e

e=1

Hu(x, y)]=u,=
(2.24)

where u, is the numerical approximation of u by the
piecewise polynomials, and

K
U up—u when N?— o or A pax —* 0,
e=1

(2.25)
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where N7 is the dimension of .#° and 4, is the maximum
size of the subdomains £2,. Similar statements can be made
for the case of u(x, y|x, y € Q) € # | (the case with Dirichlet
boundary condition).

Now we sce that the spectral element method has
two ways to achieve better numerical precision, ie., by
increasing the dimensions of the subspaces, N2, and/or the
number of the elements, K. It can be very flexible and the
optimum choice for these two parameters depends on each
individual problem to be solved. This flexibility of the
spectral element method is one of its most attractive features
compared with the spectral method and the finite element
method.

Let the solutions of the shallow water equations at time
¢ and the test functions on each subdomain €, be expanded
as

u(x, y, t) ui (1)

v(x, ¥, 1) vi{1)
h(’(x! y’ t) _ hff(t) e ]

oy 17| g Y] 226)
7 (x, ) iz

he(x, ¥) hy

where /() is the value of function fat the collocation point
{x;, y;,)e 82, at time . For the same basis set is used in
mapping the coordinates and interpolating the solutions
and test functions, it has been called the isoparameiric
method.

Since the test functions i, #, # are arbitrary, by sub-
stituting the expressions in (2.21) and (2.26) into the
variational equations (2.13)-(2.15), we can derive the
following tensor-product equation system

Gle)de By,

irs
L I3

1
+;u

||M>:
H
qu

[F‘;,,() yivd)] B,

e (1) A5 (2.27)

ifrs

K
Z’ dvs(f /drB:,jr\_ Z [F23([J+y|,' l]([)] lfrs

e=1 e=1

+Rlv A1) A% (2.28)
K

Z dhi(nfdr By, = ¥ wi(0)[hi(1)+1] C¥,,

e=1 e=1
+oplA+ 11 D5, (2.29)

where the summation ¥’ is the direct stiffness matrix
summation (assembling) as used in the finite element
method [8] and
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=] VSEMULE DG dedy (230)
o o mabi(&n)
Ars = -[AZ[ dx ox
. N AE, ) D (L, n)]
dy dy
% (&, n)l d€ dn (2.31)
a ry E
Ci-}r.,-=Jr2%;—nw mIC )l dedy  (232)
a ry é
ijr.,—J 2¢'—ay—1l/f (& my|JE m)| dE dn (2.33)
WS
l-‘j(t) { i‘np(r)]zh%]_)‘
e e éd‘fnp(éi! rl',‘}
+ b{f(t) ump(t) ay
e :“ i
+fr:;,,,(f)—-~——lp'”"é(; ) (2.34)
e (&,
F;U(I) [ mp(‘r)]z_lpmi;i—n)
oo (Eis 115
+u§;(z)v;,,(z)(—‘b—%
“ol7) —_¢””(;" ) (2.35)
e o X0y _0x0y :
JE ) 3y 58 (x, vef2,) (2.36)

All the integrations in the above equations are evaluated
by the Gauss-Lobatto quadrature scheme, which is an
exact formula for (2N --1)th-order polynomials. One
advantage of using the Gauss—Lobatto—Legendre polyno-
mials as basis functions is that we only have to deal with one
set of grid points for both interpolating the solutions and
evaluating the integrals.

The x and y derivatives in (2.31}-(2.35) can be expressed
in terms of derivatives with local coordinates, £ and #,
according to the formulae

a oy AW
dx 1 oy ozl ac
7

G Jx axfl ¢ | (2.37)

¥ Con o 0E) \on

(oY)
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The matrix formulae of (2.27)}-(2.29) are

[B][du(ty/dt] = — {[F(t)1— [yo(r)]}[B]
— o L14] (2.38)

[BI[dv(t)/dr] = —{[F()]+ [yu(t)]1}[B]
- LOILA] (239)

LB1[dh(r)/dt] = {[ut) k(1) ] + [ui)] }{C]
+{{o() A1+ (o) 11LD], (240}

where [ f(}] is the vector whose components are the values
of function f{r) at all collocation points; and the global
“stiffness matrices,” ie., [A], [B), [C], and [D], are
obtained by the summations of the local “stiffness matrices,”
A¢, B, C¢, D¥, in the following format:

[G]= i G- (241)

When boundary condition (2.12) is imposed, the columns
and rows corresponding to the boundary points should be
eliminated from the matrices of (2.38) and (2.39) because w,
v, &, 0 vanish at those points.

2.5. Temporal Discretization

Since we consider viscous flow, the restriction on the time
step of an explicit time marching scheme can be severe if the
Reynolds number is small (4, is large). We may improve
this sitution by treating the nonlinear terms explicitly and
the viscous terms implicitly [14].

In ocean applications, however, R, is usuaily large
(O(10*)y—0(10%)). It has been shown [10, 11] that a large
Reynolds number (~O(10%}) is essential in maintaining
strong wave-wave interactions in the western boundary
region. When the Reynolds number is large, a fully explicit
time discretization scheme is probably more practical. Here
we use the third-order Adams-Bashforth time marching
scherme for (2.38)-(2.40)

2

(BILC 1= LBI ] = e 3, 2,{F5 ]
D A e A Qe2)
[BHW+W—[BHf]AngAUH”]
DN+ 0I0A] @4)
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2 i.5 P i.5 Y]
(BILA" ' 1= (BIH" 1+ 41 Y, a {[w" "~ 7] K=2 ® k=2
¢=0 1.0 F . 1.0 F
+ & T[CY + { (o h" ] o 0.5t o |05t 3
+ [e" 41} [P], (2.44) -'é oo b o oD : 0.0 o o_)
E -
where [ /"] is the value of [ f(¢)] at time t=n 4d¢. tes M L l.
Figure | shows the stability regions for the four lowest 1.0 F * 1.0 F
order Adams—Bashforth schemes. We see that the stability » . *
1.5 1 -1.5 N SO 1

region generally dwindles when the order of the method
increases. However, for very large values of Reynolds
number or fluid with very small viscosity, the third-order
Adams-Bashforth scheme appears to be the best since it
includes the most of the imaginary axis.

Using the Nth-order Legendre spectral element method
with K elements, we calculated the eigenvalues of the
advection operator

du
Luﬁa, xe{—-1,1] {2.45)
with the boundary condition
u(—1)=0 (2.46)
and the eigenvalues of the diffusion operator
d’u
Lu=El-, xe[—l,l] (247)

Imaginary

Real

FIG. 1. Stability regions of the four lowest order Adams-Bashforth
schemes. —, first order; ———, second order; — ——, third order; ---
fourth order.

’

.5 -1.0 -0.5 0.0 0.5
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FIG. 2. Eigenvalues of the advection operator (2.45}(2.46) divided by
N2K}6 (=), and those of the diffusion operator (2.47)-(248) divided by
N4K*9 (o). These eigenvalues are calculated by the Legendre spectral
element method. The elemental degrees of freedom is & and the element
number is K.

with the boundary conditions

u(—1)=0, u{1)=0. {2.48)

The numerical results show that when N becomes large,
the maximum eigenvalues (in modulus) of the advection
operator tend to have the magnitude of N °K/6 and they are
virtually on the imaginary axis (Fig. 2). For the diffusion
operator, on the other hand, all its eigenvalues are real and
negative, and the biggest one tends toward — N*K*/9 when
N becomes large {Fig.2). Hence, with the third-order
Adams-Bashforth scheme, the stability restriction for an
advection problem can be obtained as

Ar<43/N*K (2.49)
and that for the diffusion problem would be
At < 4.8/N*K2 (2.50)

These numbers only reflect the results on the computation
domain of [—1,1], and they should be modified
accordingly if a different size of domain is used.
Comparing to the Legendre collocation method [4], the
maximum modulus of the eigenvalues of the spectral
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TABLE ]

Measured Maximum Time Step 4t Allowed by Egs. (2.42)-(2.44)
with Vatious Values of the Reynolds Number, R,, and Various
Elemental Degrees of Freedom in Each Spatial Direction, N

1/R, N=4 N=38 N=12 N=16
09 0.16 0.06 0.02 0.01
0.0005 0.16 0.06 0.02 0.01
0.005 016 0.06 0.02 0.01
0.05 0.16 0.02 0.005 0.002
0.5 0.03 0.003 0.0006 0.0002

Neote. The computationa) domain is a rectangle, [ ~, 7% and it has

two evenly distributed elements in each spatial direction.

element method is about K times smaller for the advection
operator and K times smaller for the diffusion operator
than those of the spectral method, if they use the same
number of total collocation points and the elements are
evenly distributed. This renders the spectral element method
a larger time step in inverse proportion te the ratios of
eigenvalues between the spectral element method and the
spectral method; ie, the spectral element method allows
K times larger time step for the advection problem and
K? times larger time step for the diffusion problem than
the spectral method does under the conditions we just
mentioned.

From the size of the time step point of view, we can draw
a conclusion from (2.49) and (2.50) that a fully explicit
scheme would not cost more if the Reynolds number is com-
parable to or larger than XN This threshold, however, can
be even lower if the actual computer time needed to solve
the problem is considered since a semi-implicit scheme is
more time consuming than an explicit one in each time step.
Table I gives the experimented Az, for (2.42)-(2.44) with
various elemental degrees of freedom in x ( p) direction and
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various values of the Reynelds pumber. It shows that 47,
is insensitive to the Reynolds number until it becomes
sufficiently small. The stability condition, therefore, indeed
rests on the advection terms when the Reynolds number is
large.

3. TEST CASES

We have done a couple of test cases to check the correct-
ness of the algorithms of the spectral element model for the
shallow water equations. Comparisons between the spectral
element numerical solutions and the analytical ones have
been made.

The linear equatorial Kelvin wave is used as one of these
tests. When the semi-periodic boundary conditions are
imposed such that the world oceans are connected in the
zonal direction, the inviscid, linear equatorial Kelvin wave
is a constant phenomenon in terms of 1ts spatial structure
and its eastward traveling speed. Figure 3 give two spectral
element mesh layouts with the same total degrees of
freedom. Figures 4 and 5 show the convergence rates
obtained under these spectral element interpolations.
Although both cases have achieved an exponential con-
vergence rate, the overall performance is better in the case
with finer elements at lower latitudes. This resuit is due to
the fact that the equatorial Kelvin wave is a low latitudinal
phenomenon with most of its energy confined to the
equatorial region. The difference between the results of these
two cases diminishes when the number of total interpolation
points becomes large enough that the wave is adequately
resolved in both cases.

In the case of an equatorial basin, the equatorial Kelvin
wave is going to encounter the eastern boundary at time
t= L, where L is the distance between the Kelvin wave and
the eastern boundary at 1 =0 (Figs. 6a, b}. After the Kelvin
wave hit the eastern boundary and the wave reflection

a b
0 a M T
111 Ll
. i
1 - - -
T )
am - - -
== = =1 .
I = Hr T
. 2248 .
alimat H Siimmii =
1
15y aga .
|
T
9L M3 N WA
_10 HOHEH]
-10 0 10 -ia a 10
X X

FIG. 3. Two example spectral element mesh layouts used in the equatorial Kelvin wave test case.
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FIG. 6. (a) Surface plot of the initiai equatorial Kelvin wave disturbance. Basin size: 10,000 km by 10,000 km (34 by 34 nondimensional units).
{b) As Fig. 6a but at r = 18.5 days. (c) As Fig. 6a but at r = 30.1 days. (d) As Fig. 6a but at 1 =41.7 days.
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FIG. 7. (a) Surface plot of the initial equatorial solitary Rossby wave. Basin size: 10,000 by 5000 km (34 by 17 nondimensicnal units). (b} As Fig. 7a

but at ¢ = 37.62 days.

occurred, a major portion of the equatorial Kelvin wave
splits into two poleward propagating coastal Kelvin wave
components, each traveling in the opposite direction of the
other (Fig. 6¢c). Eventually, both of them turn around the
corners of the basin and return to the equator. Besides
the coastal Kelvin waves, the reflection of the Kelvin wave
at the eastern boundary also generates gravity waves and
westward propagating Rossby waves (Fig. 6d). The above
characteristics of the numerical solution are in good agree-
ment with those predicted by the known equatorial wave
theories [ 13]. We note that the surface plot in Fig. 6d is not
very smooth, which indicates that the numerical precision is
no tonger very good after the time of the eastern boundary
reflection. We need to refine the interpolation to resolve the
shorter waves generated by the reflection of the Kelvin
wave, A similar situation also occurred in the Rossby wave's
reflection at the western boundary, but its extent is much
worse. This problem will be dealt with in the next section.
Another test we have run for the spectral element model
for the shallow water equations is to use the equatorial
solitary Rossby wave (Rossby modon) solution [1] as the
initial condition and then 10 compare the numerical result
with the perturbation solution. Because of the balance
between the weak nonlinearity and the weak dispersion, the
perturbation solution predicts that the equatorial solitary
Rossby wave should propagate to the west without
changing its shape. The viscosity effect has to be excluded.

TABLE 1T

Computational Efficiency of the Spectral Element Model for the
Shallow Water Equations {{2.42)-(2.44)) with a Rectangular
Domain

Number of Number of
Relative Total degrees elemenisin elements in
precision of freedom  x direction y direction

Degrees of  Cpu time
freedom per
per element time step

1.0E-4 2145 4 2 256 095s
1.0E-3 2145 8 4 64 071s
5.0E-2 2145 16 8 6 0.52s
Note. The relative precision (the absolute error divided by the

amplitude of the solution) is estimated without the viscous terms, but they
are included in other items of this table. Timings were measured on an
Alliant-FX80 with vectorization.

At the beginning of the numerical integration, a small
amount of the wave (about 4% of the initial amplitude) falls
off the main water hump and traveis to the east as
equatorial Kelvin waves. This is because the initial condi-
tion is not an exact solution but contains some perturbation
error. After 83 days (five nondimensional time units), the
“true Rossby wave” part is well separated from the error
part of the initial condition and the equatorial solitary
Rossby wave keeps a permanent form (within the numerical
precision of 10~*) thereafter while it travels to the west
(Figs. 7a, b), which is in agreement with Boyd’s prediction
[1]. The first-order perturbation approximation for the
phase speed of the equatorial solitary Rossby wave is
—0.78 ms~!, and the numerical solution yields a value of
—0.77 ms~ !, The corresponding linear Rossby wave phase
speed is —0.667 ms ', Therefore, the nonlinear effect has
increased the phase speed of the equatorial Rossby wave
with a positive sea surface displacement by almost 17 %.

The computational efficiency of the spectral element
model for the shallow water equation model is summarized
in Table 1. Without changing the total number of the inter-
polation points, using more elements in each direction
reduces the computational cost, but at the same time, the
precision level becomes lower; 12 to 16 degrees of freedom
in each dimension of an element are needed to achieve spec-
tral precision in the present study. How many elements
should be used and how to distribute them depend on the
individual problems. This is one of the flexibilities of the
spectral element method. Qwing to its potential in vec-
torization, along with other advantages it has, the spectral
element model for the shallow water equations has enabled
us to carry out a computationally intensive simulation of
the equatorial Rossby modon’s reflection process rather
inexpensively. The numerical results of this simulation is
going to be described in the next section.

4. APPLICATION TO THE ROSSBY MODON’S
REFLECTION PROBLEM

If we let the Rossby modon propagate for a long time, the
ocean boundary effect will eventually set in, no matter how
wide the model ocean is. At that time, the perturbation
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FIG. 8. As Fig. 7a but at + =90.1 days. It shows that after the Rossby
modon’s reflection, unresolved short Rossby waves give rise to numerical
instability.

solution is no longer valid. While the linear equatorial wave
reflection theory has been developed for some time, the non-
linear scenario is still unknown to us. It would be interesting
to numerically simulate the nonlinear reflection process and
to see what would happen after the modon hits the western
boundary.

In the last section, we have compared the numerical
Rossby modon solution with the perturbation solution.
Since the boundary effect was not our concern then, the
relatively few evenly distributed spectral elements were able
to produce a satisfactory resuit. However, the same spectral
¢lement interpolation could lead to numerical instability
after the Rossby modon encountered the western boundary
due to a lack of enough resoiution in the western boundary
region. The aliasing which resulted from the unresolved
short Rossby waves eventually rendered the numerical
integration meaningless (Fig. 8).

For the above reason, the spectral element interpolation
is designed in such a way that it uses refined elements in the
western boundary region in order to adequately resolve the
turbulent reflection process there (Fig. 9). We have used
fixed degrees of freedom for the basis functions so that the
spectral interpolation grid on the master element is the same

8.5
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for every element. Since the current equatorial wave
problem possesses pairity characteristics about the equator,
only the solutions in the northern half of the 17 x 17 basin
{ ~ 5000 km x 5000 km in dimensicnal units) need to be
calculated, and those corresponding to the southern half
can be reproduced according to their pairity properties. We
have found that the higher the Reynolds number, the more
turbulent is the flow in the western boundary region when
the Rossby modon is reflected from there, and hence,
the corresponding spectrai element resoiution should be
finer in that region. Theoretically, lower Reynolds numbers
generzlly mean smaller time steps, if a fully explicit model is
used. In the present application we have found, however,
that the smallest wavelength needed to be resolved is longer
in a lower Reynelds number run than that in a high
Reynolds number run, if the same precision level is required
for both runs. Therefore, we may use a coarser spatial
tesolution for the lower Reynolds number run, which
has the opposite effect on the restriction of the time step
as that caused by the lower Reynolds number. The
foliowing simulation results are calculated with Ar=0.0025
(6.12 min).

We first discuss the results with R, =2000 (A4, =2.9%10°
cm? s 1), After the Rossby modon propagates westward for
a time period of ¢ = 10, it impinges on the western boundary
and the major reflection process begins (Figs. 10a, b). It is
very interesting to observe that the nonlinear effect not only
causes the overshooting in the north-south (poleward)
direction in the western boundary layer (Fig. 10c), but it
also stimulates the formation of the multiple vortices there
(Fig. 10d). The linear theory predicts, however, that if we
count the number of vortices in the north—south ( v} direc-
tion, that there should be only one vortex on each side of the
equator after the Rossby modon’s reflection. Moreover, the
vortices created in a strongly nonlinear reflection process

17

FI1G. 9. The northern half of the spectral element mesh used in simulating the Rossby modon’s reflection in a rectangular basin. The physical problem
has symmetrical properties about the equator, so only the solutions in the northern half of the basin need to be calculated.
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are much more energetic than those in a linear reflection
process [117]. The eddies created in the strongly nonlinear
reflection process in the western boundary region are typi-
cally of sizes from 200 to 600 km in diameter (Figs. 11a, b).

Besides the short Rossby waves confined in the western
boundary region, a major portion of the Rossby modon’s
energy is transferred into eastward propagating Kelvin
waves by the reflection. Later, these Kelvin waves arrive
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at the eastern boundary and are reflected from there
(Fig. 10d). Since the difference between the wavelengths of
the incident and the reflected waves in the eastern boundary
region is not nearly as drastic as in the western boundary
region and the waves in the east are relatively long waves,
we are able to obtain smooth solutions even though we have
used far less spectral element interpolation outside the
western boundary region.

FIG. 11.

(a) Velocity field at £ =20. (b} As Fig. 10a at 1 =30.
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We repeated the simulation with different values of R . It
is found that the vortex activities in the central western
boundary region are very sensitive to this parameter.
With R, = 10,000 (4, =58%10° cm?s~"), the eddies there
become more energetic compared to the rest of the ocean
(Fig. 12) much more so than those with R, = 2000. Another
impressive phenomenon with this larger Reynolds number
is that the vortex pair sysiem in the western boundary
region shows an interesting anticyclonic rotation about its
center [117]. In thecase of R, =200 (4, =2.9%107cm?s '),
however, the eddy phenomenon is not outstanding at all.
The strength of the short Rossby waves in the western
boundary region in the low Reynolds number case is com-
parable to that of the long waves in the rest of the ocean.
Moreover, the meridional wave number of the dominant
mode in the western boundary region has not been
increased due to the reflection (Fig. 13), which is in agree-
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ment with the linear equatorial wave reflection theory
£131].

Numerical simulations with realistic ocean boundary
shapes have also been carried out. Figure 14 is a spectral
element mesh for the Atlantic Ocean, which is designed to
study the equatorial dynamics. This figure is stretched in the
v direction to show the finer elements in low latitudes where
the energy of the equatorial waves is trapped. The zonal
lengths of the elements near the western boundary region
are generally smaller than those in the eastern part of the
ocean, for the same reasons as explained before. Figure 15is
a snapshot of the upper-layer thickness displacement in the
simulation of the response of the Atlantic Ocean to the
Rossby modon. Under the realistic geometry of the Atlantic
Ocean, a train of eddies were generated in the northern
equatorial region, which consuymed a significant part of the
energy carried by the original Rossby wave packel.

FIG.

14, The spectral element mesh for the Atlantic Ocean. The figure is stretched in the y direction to show the finer elements in the lower latitudes.
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FIG. 15. Contour plot of the upper layer thickness displacement in the simulation of the Atlantic Ocean’s response to a Rossby wave packet; ¢ =70,

R, = 2000, contour interval = 0.009, and labels scaled by 1000.

5. CONCLUSIONS

The spectral element model for the shallow water equa-
tions is constructed. It is shown that this model has the
potential to solve oceanic problems efficiently. In particular,
its flexibility in arranging the spectral elements and the fact
that it is a high order numerical method make it a powerful
tool for studying frontal phenomena in oceans. As an
example, the equatorial Rossby modon’s reflection problem
is studied. We find that with high Reynolds numbers, the
reflection of the Rossby modon can result in multiple
energetic vortices in the western boundary region. The
reflection with low Reynolds number causes much weaker
eddy activities and the results are similar to those of the
linear equatorial wave theory.
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